By Topic

Evaluation of the 800 nm pump band for erbium-doped fiber amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pedersen, B. ; Electromagn. Inst., Tech. Univ. of Denmark, Lyngby, Denmark ; Miniscalco, W. ; Zemon, Stanley A.

Performs a comprehensive experimental and theoretical investigation of methods for overcoming the excited-state absorption (ESA), which is the main obstacle to efficient pumping of erbium-doped fiber amplifiers (EDFAs) at 800 nm. The effects of ESA on gain can be reduced at the cost of an additional noise penalty by adopting bidirectional pumping or by pumping in the long-wavelength tail of the ground-state absorption (GSA) band. The GSA and ESA cross-section spectra on the glass host material. One of the most promising hosts, fluorophosphate, is compared to Al/P silica in a detailed analysis based on a quantitative numerical model. It is predicted that 2-3 dB less pump power is required for the fluorophosphate EDFA. For Al/P-silica EDFAs, it is found that ~7-dB-higher power is required when pumping in the 800 nm band than for pumping at 980 and 1480 nm

Published in:

Lightwave Technology, Journal of  (Volume:10 ,  Issue: 8 )