By Topic

Speckle filtering of SAR images based on sub-aperture technique and principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jicong Zhang ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Jia Xu ; Yingning Peng ; Xiutan Wang

In this paper, a new approach to speckle filtering of synthetic aperture radar (SAR) images is presented, in which principal component analysis (PCA) is applied to sub-aperture images for RCS reconstruction. To describe a pixel, we define a parameter vector, the covariance of which is decomposed into two orthogonal subspaces: the signal subspace and the noise subspace. By projecting the variant part of the vector of the current pixel onto the signal subspace, the intrinsic structural features of the scene can be well obtained. Then, the RCS can be estimated. Experimental results show that our method compares favorably to several other de-speckling methods. It preserves details such as edges and small objects much better while its speckle inhibiting degree is not any worse. The effectiveness of this approach is demonstrated by using 1 m × 1 m X-band airborne SAR data.

Published in:

IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005.  (Volume:2 )

Date of Conference:

12-14 Oct. 2005