Cart (Loading....) | Create Account
Close category search window

Optimizing fiber Bragg gratings using a genetic algorithm with fabrication-constraint encoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tremblay, G. ; Dept. of Phys., Univ. Laval, Quebec, Canada ; Gillet, J.-N. ; Sheng, Y. ; Bernier, M.
more authors

We propose an advanced genetic algorithm (GA) to design fiber Bragg gratings (FBGs) with given fabrication constraints. Our GA is enhanced by a new Fourier-series-based real-valued encoding to obtain more degrees of freedom and a rank-based fitness function. The new GA enables us to remove phase shifts in the gratings. The designed minimum-dispersion bandpass grating has a dispersion of ±28 ps/nm in the 0.33-nm flat-top passband. The grating is fabricated using a phase mask without phase shift.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 12 )

Date of Publication:

Dec. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.