By Topic

Nanodeposition of materials with complex refractive index in long-period fiber gratings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
del Villar, I. ; Electr. & Electron. Eng. Dept., Public Univ. of Navarra, Pamplona, Spain ; Matias, I.R. ; Arregui, F.J. ; Achaerandio, M.

An overlay of higher refractive index than the cladding is deposited on a long-period fiber grating (LPFG). This causes large attenuation-band shifts in the transmission spectrum, which permits the improvement of the sensitivity of the device to ambient and overlay refractive-index changes. To obtain maximum sensitivity for specific overlay and ambient refractive indexes, an optimum overlay thickness (OOT) must be selected. For complex overlay refractive indexes, there is an additional phenomenon of vanishing of the attenuation bands. This occurs for specific overlay-thickness values. The problem is analyzed with a numerical method based on linearly polarized (LP)-mode approximation and coupled-mode theory. Experimental results are contrasted with theoretical ones.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 12 )