By Topic

Analytical study of crosstalk propagation in all-optical networks using perturbation theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pointurier, Y. ; Charles L. Brown Dept. of Electr. & Comput. Eng., Univ. of Virginia, Charlottesville, VA, USA ; Brandt-Pearce, M.

The performance of current optical networks is inherently limited by the speed of electronic components and, in particular, by electronic switches. A new generation of optical networks, referred to as all-optical networks, overcomes this limitation by switching data entirely optically using all-optical crossconnects (OXCs). However, all-optical networks are prone to phenomena that are unknown to current optical networks with electrical regeneration: OXCs are subject to optical leaks, called crosstalk, resulting in unwanted components being added to transmitted signals, and this crosstalk is transmitted over very long paths without any signal regeneration. In this paper, we consider the interplay between fiber nonlinearity and crosstalk signals over long distances as the source of performance degradation, measured in terms of Q factor. We present an analytical crosstalk model for all-optical networks and give expressions for the performance degradation resulting from the joint propagation of a signal [using a continuous-wave (CW) assumption and perturbation theory] and crosstalk in large networks. Analytical calculations required by this model are shown to be much less computationally intensive than simulations. Simulations are carried out to validate our analytical model and good agreement is found between the analytical model and simulations for wide ranges of parameters.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 12 )