By Topic

Analysis of a true time delay photonic beamformer for transmission of a linear frequency-modulated waveform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rotman, R. ; Fac. of Eng., Tel-Aviv Univ., Israel ; Raz, O. ; Tur, M.

A generalized conversion matrix (GCM) and numerical analysis are used to study the distortions suffered by a linear frequency-modulated radio frequency (RF) pulse while propagating through photonic links to be used in wideband phased arrays. The analysis shows the effects of dispersion of all orders, coherent crosstalk and nonlinearity of the optical components on the RF pulse, and the high performance needed to achieve acceptable RF performance of the temporal (impulse) response. The effects of the electrical-to-optical (E/O) and optical-to-electrical (O/E) conversions are also considered. Using the GCM, the optical amplitude and phase fluctuations are converted into their RF counterparts, thereby reducing the optical problem into the well-understood RF domain. A photonic wavelength-controlled true delay device is experimentally shown to achieve good RF performance over a 4-GHz bandwidth, with predicted sidelobe levels below 30 dB.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 12 )