Cart (Loading....) | Create Account
Close category search window
 

A design methodology for efficient application-specific on-chip interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wai Hong Ho ; Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA ; Pinkston, T.M.

As the level of chip-integration continues to advance at a fast pace, the desire for efficient interconnects - whether on-chip or off-chip - is rapidly increasing. Traditional interconnects like buses, point-to-point wires, and regular topologies may suffer from poor resource sharing in the time and space domains, leading to high contention or low resource utilization. In this paper, we propose a design methodology for constructing networks for special-purpose computer systems with well-behaved (known) communication characteristics. A temporal and spatial model is proposed to define the sufficient condition for contention-free communication. Based upon this model, a design methodology using a recursive bisection technique is applied to systematically partition a parallel system such that the required number of links and switches is minimized while achieving low contention. Results show that the design methodology can generate more optimized on-chip networks with up to 60 percent fewer resources than meshes or tori while providing blocking performance closer to that of a fully connected crossbar.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.