By Topic

A systematic approach to exploring embedded system architectures at multiple abstraction levels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pimentel, A.D. ; Informatics Inst., Amsterdam Univ., Netherlands ; Erbas, C. ; Polstra, S.

The sheer complexity of today's embedded systems forces designers to start with modeling and simulating system components and their interactions in the very early design stages. It is therefore imperative to have good tools for exploring a wide range of design choices, especially during the early design stages, where the design space is at its largest. This paper presents an overview of the Sesame framework, which provides high-level modeling and simulation methods and tools for system-level performance evaluation and exploration of heterogeneous embedded systems. More specifically, we describe Sesame's modeling methodology and trajectory. It takes a designer systematically along the path from selecting candidate architectures, using analytical modeling and multiobjective optimization, to simulating these candidate architectures with our system-level simulation environment. This simulation environment subsequently allows for architectural exploration at different levels of abstraction while maintaining high-level and architecture-independent application specifications. We illustrate all these aspects using a case study in which we traverse Sesame's exploration trajectory for a motion-JPEG encoder application.

Published in:

Computers, IEEE Transactions on  (Volume:55 ,  Issue: 2 )