Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Power-efficient error tolerance in chip multiprocessors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rashid, M.W. ; Dept. of Electr. & Comput. Eng., Rochester Univ., NY, USA ; Tan, E.J. ; Huang, M.C. ; Albonesi, D.H.

The microprocessor industry is rapidly moving to the use of multicore chips as general-purpose processors. Whereas the current generation of chip multiprocessors (CMPs) target server applications, future desktop processors likely have tens of multithreaded cores on a single die. Various redundant multithreading (RMT) approaches exploit the multithreaded capability of current general-purpose microprocessors. These approaches replicate the entire program, running it as a separate thread using time or space redundancy. This guards the processor core against all errors, including those in combinational logic. Because RMT exploits the existing multithreaded hardware, it requires only a modest amount of additional hardware support for comparing results and, depending on the implementation, duplicating inputs.

Published in:

Micro, IEEE  (Volume:25 ,  Issue: 6 )