Cart (Loading....) | Create Account
Close category search window
 

Improved thermal management with reliability banking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhijian Lu ; Charles L. Brown Dept. of Electr. & Comput. Eng., Virginia Univ., Charlottesville, VA, USA ; Lach, J. ; Stan, M.R. ; Skadron, K.

Using a fixed temperature for thermal throttling is pessimistic. Reduced aging during periods of low temperature can compensate for accelerated aging during periods of high temperature. Runtime tracking of the temperature-dependent aging rate means that throttling is engaged only when necessary to maintain reliability. In this article, we show that the effect of cool (low-temperature) phases can compensate for that of hot (high-temperature) phases on reliability. Existing dynamic thermal management (DTM) techniques ignore the effects of temperature fluctuations on chip lifetime and can unnecessarily impose performance penalties for hot phases. Using electromigration as the targeted failure mechanism, we apply a dynamic reliability model and propose a dynamic reliability management (DRM) technique to dynamically track the consumption of chip lifetime during operation.

Published in:

Micro, IEEE  (Volume:25 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.