By Topic

Performance analysis of nonblocking packet switch with input and output buffers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Oie, Y. ; Dept. of Comput. Sci. & Electron., Kyushu Inst. of Technol., Fukuoka, Japan ; Murata, M. ; Kubota, K. ; Miyahara, H.

The performance of nonblocking packet switches such as the knockout switch and Batcher banyan switch for high-speed communication networks can be improved as the switching capacity L per output increases; the switching capacity per output refers to the maximum number of packets transferred to an output during a slot. The N×N switch with L=N was shown to attain the best possible performance by M.J. Karol et al. (1987). Here a N×N nonblocking packet switch with input and output buffers is analyzed for an arbitrary number of L such that 1⩽LN. The maximum throughput and packet loss probability at input are obtained when N=∞

Published in:

Communications, IEEE Transactions on  (Volume:40 ,  Issue: 8 )