By Topic

Mining evolving streams with resource adaptive computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
P. S. Yu ; IBM T. J. Watson, Yorktown Heights, NY, USA

Summary form only given. The problem of streaming data has gained importance in recent years because of advances in hardware technology. The ubiquitous presence of data streams in a number of practical domains has generated a lot of research in this area. Example applications include surveillance for terrorist attack, network monitoring for intrusion detection, and others. Problems such as data mining which have been widely studied for traditional data sets cannot be easily solved for the data stream domain. This is because the large volume of data arriving in a stream renders most algorithms to inefficient as most mining algorithms require multiple scans of data which is unrealistic for stream data. More importantly, the characteristics of the data stream can change over time and the evolving pattern needs to be captured. Furthermore, we also need to consider the problem of resource allocation in mining data streams. Due to the large volume and the high speed of streaming data, mining algorithms must cope with the effects of system overload. Thus, how to achieve optimum results under various resource constraints becomes a challenging task. In this talk, the author provides an overview, discusses the issues and focuses on how to mine evolving data streams and perform resource adaptive computation.

Published in:

Seventh IEEE International Symposium on Multimedia (ISM'05)

Date of Conference:

12-14 Dec. 2005