By Topic

Kernel-density-based clustering of time series subsequences using a continuous random-walk noise model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. Denton ; Dept. of Comput. Sci., North Dakota State Univ., Fargo, ND, USA

Noise levels in time series subsequence data are typically very high, and properties of the noise differ front those of white noise. The proposed algorithm incorporates a continuous random-walk noise model into kernel-density-based clustering. Evaluation is done by testing to what extent the resulting clusters are predictive of the process that generated the time series. It is shown that the new algorithm not only outperforms partitioning techniques that lead to trivial and unsatisfactory results under the given quality measure, but also improves upon other density-based algorithms. The results suggest that the noise elimination properties of kernel-density-based clustering algorithms can be of significant value for the use of clustering in preprocessing of data.

Published in:

Fifth IEEE International Conference on Data Mining (ICDM'05)

Date of Conference:

27-30 Nov. 2005