By Topic

A Real-Time Human Stress Monitoring System Using Dynamic Bayesian Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenhui Liao ; Rensselaer Polytechnic Institute ; Weihong Zhang ; Zhiwei Zhu ; Qiang Ji

We present a real time non-invasive system that infers user stress level from evidences of different modalities. The evidences include physical appearance (facial expression, eye movements, and head movements) extracted from video via visual sensors, physiological conditions collected from an emotional mouse, behavioral data from user interaction activities with the computer, and performance measures. We provide a Dynamic Bayesian Network (DBN) framework to model the user stress and these evidences. We describe the computer vision techniques we used to extract the visual evidences, the DBN model for modeling stress and the associated factors, and the active sensing strategy to collect the most informative evidences for efficient stress inference. Our experiments show that the inferred user stress level by our system is consistent with that predicted by psychological theories.

Published in:

Computer Vision and Pattern Recognition - Workshops, 2005. CVPR Workshops. IEEE Computer Society Conference on

Date of Conference:

25-25 June 2005