By Topic

Combining Local and Global Image Features for Object Class Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Object recognition is a central problem in computer vision research. Most object recognition systems have taken one of two approaches, using either global or local features exclusively. This may be in part due to the difficulty of combining a single global feature vector with a set of local features in a suitable manner. In this paper, we show that combining local and global features is beneficial in an application where rough segmentations of objects are available. We present a method for classification with local features using non-parametric density estimation. Subsequently, we present two methods for combining local and global features. The first uses a "stacking" ensemble technique, and the second uses a hierarchical classification system. Results show the superior performance of these combined methods over the component classifiers, with a reduction of over 20% in the error rate on a challenging marine science application.

Published in:

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops

Date of Conference:

25-25 June 2005