By Topic

Segmentation methods for character recognition: from segmentation to document structure analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Fujisawa ; Hitachi Ltd., Tokyo, Japan ; Y. Nakano ; K. Kurino

A pattern-oriented segmentation method for optical character recognition that leads to document structure analysis is presented. As a first example, segmentation of handwritten numerals that touch are treated. Connected pattern components are extracted, and spatial interrelations between components are measured and grouped into meaningful character patterns. Stroke shapes are analyzed and a method of finding the touching positions that separates about 95% of connected numerals correctly is described. Ambiguities are handled by multiple hypotheses and verification by recognition. An extended form of pattern-oriented segmentation, tabular form recognition, is considered. Images of tabular forms are analyzed, and frames in the tabular structure are extracted. By identifying semantic relationships between label frames and data frames, information on the form can be properly recognized

Published in:

Proceedings of the IEEE  (Volume:80 ,  Issue: 7 )