By Topic

On the reliability-order-based decoding algorithms for binary linear block codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuansheng Tang ; Coll. of Math. Sci., Yangzhou Univ., Jiangsu, China ; San Ling ; Fang-Wei Fu

In this correspondence, we consider the decoding of binary block codes over the additive white Gaussian noise (AWGN) channel with binary phase-shift keying (BPSK) signaling. By a reliability-order-based decoding algorithm (ROBDA), we mean a soft-decision decoding algorithm which decodes to the best (most likely) codeword of the form that is the sum of the hard-decision tuple and an error pattern in a set determined only by the order of the reliabilities of the hard decisions. Examples of ROBDAs include many well-known decoding algorithms, such as the generalized-minimum-distance (GMD) decoding algorithm, Chase decoding algorithms, and the reliability-based decoding algorithms proposed by Fossorier and Lin. It is known that the squared error-correction-radii of ROBDAs can be computed from the minimal squared Euclidean distances (MSEDs) between the all-one sequence and the polyhedra corresponding to the error patterns. For the computation of such MSEDs, we give a new method which is more compact than the one proposed by Fossorier and Lin. These results are further used to show that any bounded-distance ROBDA is asymptotically optimal: The ratio between the probability of decoding error of a bounded-distance ROBDA and that of the maximum-likelihood (ML) decoding approaches 1 when the signal-to-noise ratio (SNR) approaches infinity, provided that the minimum Hamming distance of the code is greater than 2.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 1 )