By Topic

Coding for the optical channel: the ghost-pulse constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kashyap, N. ; Dept. of Math. & Stat., Queen''s Univ., Kingston, Ont., Canada ; Siegel, P.H. ; Vardy, A.

We consider a number of constrained coding techniques that can be used to mitigate a nonlinear effect in the optical fiber channel that causes the formation of spurious pulses, called "ghost pulses". Specifically, if b1b2...bn is a sequence of bits sent across an optical channel, such that bk=bl=bm=1 for some k,l,m (not necessarily all distinct) but bk+l-m=0, then the ghost-pulse effect causes bk+l-m to change to 1, thereby creating an error. Such errors do not occur if the sequence of bits satisfies the following constraint: for all integers k,l,m such that bk=bl=bm=1, we have bk+l-m=1. We call this the binary ghost-pulse (BGP) constraint. We will show, however, that the BGP constraint has zero capacity, implying that sequences satisfying this constraint cannot carry much information. Consequently, we consider a more sophisticated coding scheme, which uses ternary sequences satisfying a certain ternary ghost-pulse (TGP) constraint. We further relax these constraints by ignoring interactions between symbols that are more than a certain distance t apart in the transmitted sequence. Analysis of the resulting BGP(t) and TGP(t) constraints shows that these have nonzero capacities, and furthermore, the TGP(t)-constrained codes can achieve rates that are significantly higher than those for the corresponding BGP(t) codes. We also discuss the design of encoders and decoders for coding into the BGP, BGP(t), and TGP(t) constraints.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 1 )