Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Signal subspace change detection in averaged multilook SAR imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ranney, K.I. ; US Army Res. Lab., Adelphi, MD, USA ; Soumekh, M.

This paper addresses change detection in averaged multilook synthetic aperture radar (SAR) imagery. Averaged multilook SAR images are preferable to full-aperture SAR reconstructions when the imaging algorithm is approximation-based (e.g., polar format processing) or when motion data are not accurate over a long full aperture. We examine the application of a SAR change-detection method, known as signal subspace processing, which is based on the principles of two-dimensional adaptive filtering, and we use it to recognize the addition of surface landmines to a particular area under surveillance. We describe the change-detection problem as a trinary hypothesis testing problem, and define a change signal and its normalized version to determine whether: 1) there is no change in the imaged scene; 2) a target has entered the imaged scene; or 3) a target has exited the imaged scene. A statistical analysis of the error signal is provided to show its properties and merits. Results are presented for averaged noncoherent multilook and coherent single-look X-band SAR imagery.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 1 )