By Topic

Photoresponse of (In,Ga)N-GaN multiple-quantum-well structures in the visible and UVA ranges

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
C. Rivera ; Inst. for Syst. based on Optoelectron. & Microtechnol., Polytech. Univ. of Madrid, Spain ; J. L. Pau ; A. Navarro ; E. Munoz

Characterization and analysis of photoresponse in p-n diodes with embedded (In,Ga)N-GaN multiple-quantum-well (MQW) structures are reported. Their dependence on the number of wells and In composition are considered. The influence of device structure on electric fields in the active region and on device responsivity has also been studied. Theoretical considerations as well as photocapacitance and photocurrent measurements show that the position of quantum wells (QWs), either in the quasi-neutral region or in the space charge region, is a critical factor in the collection efficiency. Hence, device photoresponse is not proportional to the number of QWs in photovoltaic mode. Present p-MQW-n devices show a promising performance as UVA and visible photodetectors, with detectivities, D*, higher than 1.2×1012 cm·Hz12/·W-1 and rejection ratios higher than 103.

Published in:

IEEE Journal of Quantum Electronics  (Volume:42 ,  Issue: 1 )