By Topic

Finite element implementation of Maxwell's equations for image reconstruction in electrical impedance tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Soni, N.K. ; Philips Med. Syst., Cleveland, OH, USA ; Paulsen, K.D. ; Dehghani, Hamid ; Hartov, A.

Traditionally, image reconstruction in electrical impedance tomography (EIT) has been based on Laplace's equation. However, at high frequencies the coupling between electric and magnetic fields requires solution of the full Maxwell equations. In this paper, a formulation is presented in terms of the Maxwell equations expressed in scalar and vector potentials. The approach leads to boundary conditions that naturally align with the quantities measured by EIT instrumentation. A two-dimensional implementation for image reconstruction from EIT data is realized. The effect of frequency on the field distribution is illustrated using the high-frequency model and is compared with Laplace solutions. Numerical simulations and experimental results are also presented to illustrate image reconstruction over a range of frequencies using the new implementation. The results show that scalar/vector potential reconstruction produces images which are essentially indistinguishable from a Laplace algorithm for frequencies below 1 MHz but superior at frequencies reaching 10 MHz.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 1 )