By Topic

Mean and covariance properties of dynamic PET reconstructions from list-mode data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Asma, E. ; Univ. of Southern California, Los Angeles, CA, USA ; Leahy, R.M.

We derive computationally efficient methods for the estimation of the mean and variance properties of penalized likelihood dynamic positron emission tomography (PET) images. This allows us to predict the accuracy of reconstructed activity estimates and to compare reconstruction algorithms theoretically. We combine a bin-mode approach in which data is modeled as a collection of independent Poisson random variables at each spatiotemporal bin with the space-time separabilities in the imaging equation and penalties to derive rapidly computable analytic mean and variance approximations. We use these approximations to compare bias/variance properties of our dynamic PET image reconstruction algorithm with those of multiframe static PET reconstructions.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 1 )