By Topic

Transmit selection diversity with maximal-ratio combining for multicarrier DS-CDMA wireless networks over Nakagami-m fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jia Tang ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Xi Zhang

We propose the scheme to integrate transmit selection diversity/maximal-ratio combining (TSD/MRC) with multicarrier (MC) direct-sequence code-division multiple access (DS-CDMA) for various wireless networks. Applying this TSD/MRC-based scheme, the transmitter jointly selects the optimal subcarrier-and-antenna pair to significantly decrease the peak-to-average power ratio (PAPR), which is one of the main problems inherently associated with MC DS-CDMA communications. Over the frequency-selective Nakagami-m fading channels, we develop the unified analytical framework to analyze the symbol-error rate (SER) of the scheme implemented in different types of wireless networks, while dealing with the perfect and imperfect channel state information (CSI) feedbacks, respectively. The imperfect feedbacks we focus on include delayed feedbacks and erroneous feedbacks. Taking the imperfectness of the feedback into account, the resultant SER is compared with that of both conventional selection diversity (SD)/MRC-based and space-time block coding (STBC)/MRC-based schemes. Our analyses show that in a wide variation of the feedback imperfectness, our proposed TSD/MRC-based scheme has significant advantages over the other two schemes for both downlink cellular networks and ad hoc wireless networks. However, our analytical findings indicate that TSD/MRC-based scheme cannot always outperform SD/MRC-based and STBC/MRC-based schemes even when the perfect CSI feedbacks are available.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:24 ,  Issue: 1 )