By Topic

A novel dynamic cell configuration scheme in next-generation situation-aware CDMA networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ching-Yu Liao ; Telecordia Appl. Res. Center Taiwan Co., Taipei, Taiwan ; Yu, F. ; Leung, V.C.M. ; Chung-Ju Chang

To balance the time-varying traffic load between cells, caused by user mobility and diverse applications, it is crucial for next-generation code-division multiple-access (CDMA) cellular networks to configure cell coverage and capacity dynamically. In this paper, we show that pilot power allocation is highly coupled to other facets of radio resource management. We propose a novel dynamic cell configuration scheme for multimedia CDMA cellular networks, based on reinforcement-learning, which takes into account pilot, soft handoff, and maximum link power allocations, as well as call admission control mechanisms. Simulation results demonstrate the effectiveness of the proposed scheme in situation-aware CDMA networks.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:24 ,  Issue: 1 )