By Topic

Dynamic model and control of the NPC-based back-to-back HVDC system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yazdani, A. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Iravani, R.

This paper presents a comprehensive model of the Back-to-Back (BtB) HVDC system based on the three-level Neutral-Point Diode Clamped (NPC) converter. Based on the developed model, a systematic design procedure for i) the ac-side controllers, ii) the voltage balancer of the dc-side capacitors, and iii) the net dc-bus voltage controller, are presented. The model is developed based on the generalized state-space averaging method and the principle of power balance. The developed model precisely describes the system dynamics if the ac grids are strongly or moderately stiff, and offers acceptable precision otherwise. The averaged nature of the model inherently renders itself for analysis in the SIMULINK/MATLAB environment, and thus provides a computationally efficient tool for the design and the performance evaluation of the control. The accuracy of the developed model and the controls are validated by comparing the results from MATLAB/SIMULINK with those obtained from the exact switching model of the system, based on digital time-domain simulation studies, using the PSCAD/EMTDC software package.

Published in:

Power Delivery, IEEE Transactions on  (Volume:21 ,  Issue: 1 )