Cart (Loading....) | Create Account
Close category search window
 

A CT saturation detection algorithm using symmetrical components for current differential protection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Villamagna, N. ; Sch. of Electr. & Electron. Eng., Queen''s Univ. of Belfast, UK ; Crossley, P.A.

A method of symmetrical component analysis for the detection of current-transformer (CT) saturation in a numerical current differential feeder protection relay is presented in this paper. The performance of the differential relay is investigated for various faults on a typical Electro-Magnetic Transients Program/Alternative Transients Program (EMTP/ATP) simulated transmission feeder. The simulator includes the effects of CT saturation. A comparison between simulation and tests conducted on an analog model testbench are also evaluated. The results show a high degree of similarity and illustrate the effect that CT saturation imposes on the sensitivity and stability of the protection scheme. An algorithm is presented that shows significant improvement in sensitivity on internal faults while still maintaining a high level of stability on external faults and nonfault events.

Published in:

Power Delivery, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Jan. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.