By Topic

Efficient testing of SRAM with optimized march sequences and a novel DFT technique for emerging failures due to process variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qikai Chen ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Mahmoodi, H. ; Bhunia, S. ; Roy, K.

With increasing inter-die and intra-die parameter variations in sub-100-nm process technologies, new failure mechanisms are emerging in CMOS circuits. These failures lead to reduction in reliability of circuits, especially the area-constrained SRAM cells. In this paper, we have analyzed the emerging failure mechanisms in SRAM caches due to transistor V/sub t/ variations, which results from process variations. Also we have proposed solutions to detect those failures efficiently. In particular, in this work, SRAM failure mechanisms under transistor V/sub t/ variations are mapped to logic fault models. March test sequences have been optimized to address the emerging failure mechanisms with minimal overhead on test time. Moreover, we have proposed a design for test circuit to complement the March test sequence for at-speed testing of SRAMs. The proposed technique, referred as double sensing, can be used to test the stability of SRAM cells during read operations. Using the proposed March test sequence along with the double sensing technique, a test time reduction of 29% is achieved, compared to the existing test techniques with the same fault coverage. We have also demonstrated that double sensing can be used during SRAM normal operation for online detection and correction of any number of random read faults.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 11 )