By Topic

Trading end-to-end latency for composability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matic, S. ; California Univ., Berkeley, CA ; Henzinger, T.A.

The periodic resource model for hierarchical, compositional scheduling abstracts task groups by resource requirements. We study this model in the presence of dataflow constraints between the tasks within a group (intragroup dependencies), and between tasks in different groups (inter-group dependencies). We consider two natural semantics for dataflow constraints, namely, RTW (real-time workshop) semantics and LET (logical execution time) semantics. We show that while RTW semantics offers better end-to-end latency on the task group level, LET semantics allows tighter resource bounds in the abstraction hierarchy and therefore provides better composability properties. This result holds both for intragroup and intergroup dependencies, as well as for shared and for distributed resources

Published in:

Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE International

Date of Conference:

8-8 Dec. 2005