Cart (Loading....) | Create Account
Close category search window

Evaluation of Design Alternatives for a Multiprocessor Microprocessor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In the future, advanced integrated circuit processing and packaging technology will allow for several design options for multiprocessor microprocessors. In this paper we consider three architectures: shared-primary cache, shared-secondary cache, and shared-memory. We evaluate these three architectures using a complete system simulation environment which models the CPU, memory hierarchy and I/O devices in sufficient detail to boot and run a commercial operating system. Within our simulation environment, we measure performance using representative hand and compiler generated parallel applications, and a multiprogramming workload. Our results show that when applications exhibit fine-grained sharing, both shared-primary and shared-secondary architectures perform similarly when the full costs of sharing the primary cache are included.

Published in:

Computer Architecture, 1996 23rd Annual International Symposium on

Date of Conference:

22-24 May 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.