By Topic

Using interval particle filtering for marker less 3D human motion capture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Saboune ; INRIA-LORIA, Vandoeuvre Les Nancy, France ; F. Charpillet

In this paper we present a new approach for marker less human motion capture from conventional camera feeds. The aim of our study is to recover 3D positions of key points of the body that can serve for gait analysis. Our approach is based on foreground segmentation, an articulated body model and particle filters. In order to be generic and simple no restrictive dynamic modelling was used. A new modified particle filtering algorithm was introduced. It is used efficiently to search the model configuration space. This new algorithm which we call interval particle filtering reorganizes the configurations search space in an optimal deterministic way and proved to be efficient in tracking natural human movement. Results for human motion capture from a single camera are presented and compared to results obtained from a marker based system. The system proved to be able to track motion successfully even in partial occlusions

Published in:

17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)

Date of Conference:

16-16 Nov. 2005