By Topic

A dynamic Bayesian network for handling uncertainty in a decision support system adapted to the monitoring of patients treated by hemodialysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Rose ; INRIA-LORIA, Vandoeuvre-les-Nancy, France ; C. Smaili ; F. Charpillet

Telemedicine is a mean of facilitating the distribution of human resources and professional competences. It can speed up diagnosis and therapeutic care delivery and allow peripheral healthcare providers to receive continuous assistance from specialized centers. The need of specialized human resources becomes critical with the aging of the population. The treatment of renal failure is an example where telemedicine can help to increase care quality. Over the last decades Bayesian networks has become a popular representation for encoding uncertain expert knowledge. Dynamic Bayesian networks are an extension of Bayesian networks for modeling dynamic processes. We developed a dynamic Bayesian network adapted to the monitoring of the dry weight of patients suffering from chronic renal failure treated by hemodialysis. An experimentation conducted at dialysis units indicated that the system is reliable and gets the approbation of its users

Published in:

17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05)

Date of Conference:

16-16 Nov. 2005