By Topic

Development of system for crossarm reuse judgment on the basis of classification of rust images using support vector machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yamana, M. ; Inst. of Central Res., Electr. Power Ind., Tokyo ; Murata, H. ; Onoda, T. ; Ohashi, T.

We attempt to develop a crossarm reuse judgment system based on rust images that uses machine learning techniques. The system consists of a digital camera and a standard note book personal computer (PC). We estimate the degree of accuracy of the judgment of various pattern classification methods without special image processing techniques such as the extraction of features. The results show that a support vector machine is the most suitable instrument for this judgment system. We obtain the high degree of accuracy by compressing the image data in order to decrease the number of features

Published in:

Tools with Artificial Intelligence, 2005. ICTAI 05. 17th IEEE International Conference on

Date of Conference:

16-16 Nov. 2005