By Topic

Intrusion detection based on cross-correlation of system call sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoqiang Zhang ; Inst. of Mobile Commun., Southwest Jiaotong Univ., Chengdu ; Zhongliang Zhu ; Pingzhi Fan

A new light-weight approach, based on the cross-correlation of system call sequences, is presented to identify normal or intrusive program behavior. The program behavior is represented by the cross-correlation value which can be used to indicate the similarity between two sequences. If two sequences are same, the cross-correlation between them will achieve the maximum value. This method of characterizing program behavior by using cross-correlation offers significant computational advantages over HMM (hidden Markov model) or NN (neural network) methods due to the absence of unnecessary training process. Our experiments using UNM (University of New Mexico) audit data show that the cross-correlation based method can effectively detect intrusive attacks and achieve a low false positive rate

Published in:

Tools with Artificial Intelligence, 2005. ICTAI 05. 17th IEEE International Conference on

Date of Conference:

16-16 Nov. 2005