By Topic

A semi-supervised learning method for remote sensing data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vatsavai, R.R. ; Dept. of Comput. Sci. & Eng., Minnesota Univ., Minneapolis, MN ; Shashi Shekhar ; Burk, T.E.

New approaches are needed to extract useful patterns from increasingly large multi-spectral remote sensing image databases in order to understand global climatic changes, vegetation dynamics, ocean processes, etc. Supervised learning, which is often used in land cover (thematic) classification of remote sensing imagery, requires large amounts of accurate training data. However, in many situations it is very difficult to collect labels for all training samples. In this paper we explore methods that utilize unlabeled samples in supervised learning for thematic information extraction from remote sensing imagery. Our objectives are to understand the impact of parameter estimation with small learning samples on classification accuracy, and to augment the parameter estimation with unlabeled training samples to improve land cover predictions. We have developed a semi-supervised learning method based on the expectation-maximization (EM) algorithm, and maximum likelihood and maximum a posteriori classifiers. This scheme utilizes a small set of labeled and a large number of unlabeled training samples. We have conducted several experiments on multi-spectral images to understand the impact of unlabeled samples on the classification performance. Our study shows that though in general classification accuracy improves with the addition of unlabeled training samples, it is not guaranteed to get consistently higher accuracies unless sufficient care is exercised when designing a semi-supervised classifier

Published in:

Tools with Artificial Intelligence, 2005. ICTAI 05. 17th IEEE International Conference on

Date of Conference:

16-16 Nov. 2005