By Topic

Multitarget tracking using the joint multitarget probability density

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Kreucher ; Gen. Dynamics Adv. Inf. Syst., Ypsilanti, MI, USA ; K. Kastella ; A. O. Hero

This work addresses the problem of tracking multiple moving targets by recursively estimating the joint multitarget probability density (JMPD). Estimation of the JMPD is done in a Bayesian framework and provides a method for tracking multiple targets which allows nonlinear target motion and measurement to state coupling as well as nonGaussian target state densities. The JMPD technique simultaneously estimates both the target states and the number of targets in the surveillance region based on the set of measurements made. We give an implementation of the JMPD method based on particle filtering techniques and provide an adaptive sampling scheme which explicitly models the multitarget nature of the problem. We show that this implementation of the JMPD technique provides a natural way to track a collection of targets, is computationally tractable, and performs well under difficult conditions such as target crossing, convoy movement, and low measurement signal-to-noise ratio (SNR).

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:41 ,  Issue: 4 )