By Topic

A one-dimensional numerical model of acoustic wave propagation in a multilayered structure of a resistance spot weld

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chertov, A.M. ; Centre for Imaging Res. & Adv. Mater. Characterization, Windsor Univ., Ont., Canada ; Maev, R.G.

A one-dimensional model of acoustic wave propagation in a multilayered structure of a spot weld is developed. The inhomogeneity of the material properties due to the thermal inhomogeneity is included in the equation of motion. The model enables us to deal with arbitrary spatial distributions of Lame constants and density. The model allows analysis of travel time, multiple reflections, and interference in a given geometry. Use of this model could provide information to help predict behavior of the waves in the transmission (reflection) mode at different plate thicknesses and welding settings.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 10 )