Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michaels, J.E. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Michaels, T.E.

Permanently mounted ultrasonic transducers have the potential to interrogate large areas of a structure, and thus be effective global sensors for structural health monitoring. Recorded signals, although very sensitive to damage, are long, complex, and difficult to interpret compared to pulse echo and through transmission signals customary for nondestructive testing. These diffuse signals also are quite sensitive to environmental effects such as temperature and surface condition changes. Waveform comparison methods such as time domain differencing and spectral analysis, although effective for detecting changes, are generally unsuccessful in discriminating damage from environmental effects. This paper considers the local temporal coherence as another means of comparing two waveforms in order to provide a quantitative measure of the change in shape of a signal compared to a reference as a function of time from transmit. Experimental results show that the local temporal coherence is effective in discriminating structural damage from both temperature changes and modest changes in surface conditions; results are compared to those obtained from time domain and spectrogram differencing. The advantages of this methodology are the simplicity of the transducers, the applicability to a wide range of structures, and the straightforward signal processing.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 10 )