Cart (Loading....) | Create Account
Close category search window
 

An ultrasonic linear motor using ridge-mode traveling waves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tominaga, M. ; Precision & Intelligence Lab., Tokyo Inst. of Technol., Yokohama, Japan ; Kaminaga, R. ; Friend, James R. ; Nakamura, K.
more authors

A new type of ultrasonic linear motor is presented using traveling waves excited along a ridge atop a substrate. The ridge cross section was designed to permit only the fundamental mode to be excited during operation of the motor, with a Langevin transducer used as the source of vibration in this study. The ridge waveguide was first made of lossy media to avoid reflecting vibration energy back toward the vibration source, forming a traveling wave. A 5-mm-wide, 15-mm-tall rectangular acrylic ridge was used to move a slider placed upon it toward the vibration source, in opposition to the direction of the traveling wave transmitted along the waveguide ridge. Using a low-loss 3 /spl times/ 6-mm aluminum rectangular ridge combined with a damper damped onto the far end of the waveguide, similar results were obtained. To obtain bidirectional operation, the damper was replaced with a second Langevin transducer, giving a pair of transducers located perpendicularly to the ends of the ridge and driven with an appropriate phase difference. The moving direction of the slider was reversed by shifting this phase difference by about 180 degrees. With this simple configuration, it may soon be possible to fabricate a linear micromotor system on a silicon substrate or other semiconductor wafer adjacent to other electronic and optoelectronic devices.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:52 ,  Issue: 10 )

Date of Publication:

Oct. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.