By Topic

A robust maximin approach for MIMO communications with imperfect channel state information based on convex optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Pascual-Iserte ; Dept. of Signal Theor. & Commun., Tech. Univ. of Catalonia, Barcelona, Spain ; D. P. Palomar ; A. I. Perez-Neira ; M. A. Lagunas

This paper considers a wireless communication system with multiple transmit and receive antennas, i.e., a multiple-input-multiple-output (MIMO) channel. The objective is to design the transmitter according to an imperfect channel estimate, where the errors are explicitly taken into account to obtain a robust design under the maximin or worst case philosophy. The robust transmission scheme is composed of an orthogonal space-time block code (OSTBC), whose outputs are transmitted through the eigenmodes of the channel estimate with an appropriate power allocation among them. At the receiver, the signal is detected assuming a perfect channel knowledge. The optimization problem corresponding to the design of the power allocation among the estimated eigenmodes, whose goal is the maximization of the signal-to-noise ratio (SNR), is transformed to a simple convex problem that can be easily solved. Different sources of errors are considered in the channel estimate, such as the Gaussian noise from the estimation process and the errors from the quantization of the channel estimate, among others. For the case of Gaussian noise, the robust power allocation admits a closed-form expression. Finally, the benefits of the proposed design are evaluated and compared with the pure OSTBC and nonrobust approaches.

Published in:

IEEE Transactions on Signal Processing  (Volume:54 ,  Issue: 1 )