By Topic

Iterative joint optimization of minimal transmit redundancy FIR zero-forcing precoder-equalizer system for MIMO-ISI channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Man-Wai Kwan ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., China ; Chi-Wah Kok

An iterative joint finite-impulse response (FIR) zero-forcing (ZF) precoder-equalizer optimization algorithm for multiple-input multiple-output intersymbol interference (MIMO-ISI) channel is proposed. The existing joint precoder-equalizer design algorithms for MIMO-ISI channels require a guard period, which is longer than or equal to the channel order to avoid the interblock interference (IBI). This longer guard period is a kind of unnecessary redundancy consuming the valuable channel bandwidth. Based on space-time-modulated codes (STMC), this paper proposes the first algorithm for jointly optimizing the FIR precoder and equalizer without the guard-period constraint. Hence, the precoder-equalizer pairs obtained can achieve minimal transmit redundancy ISI-free communications for complex-valued signals. This greatly enhances the spectral efficiency for wide-band communications. The proposed algorithm is performed in an iterative basis. Sufficient conditions and convergence analysis of this algorithm are presented. The resultant precoder and equalizer are proved to be a least-square (LS) optimal solution for each other. The simulation results show that substantial performance gain is obtained with the proposed joint optimization algorithm.

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 1 )