By Topic

Assessment of the autonomic control of heart rate variability in healthy and spinal-cord injured subjects: contribution of different complexity-based estimators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
G. Merati ; Inst. of Phys. Exercise, Univ. of Milan, Italy ; M. Di Rienzo ; G. Parati ; A. Veicsteinas
more authors

We investigated how complexity-based estimators of heart rate variability can detect changes in cardiovascular autonomic drive with respect to traditional measures of variability. This was done by analyzing healthy subjects and paraplegic patients with different autonomic impairment due to low (vascular impairment only) or high (cardiac and vascular impairment) spinal cord injury, during progressive autonomic activations. While traditional techniques only quantified the effects of the autonomic activation, not distinguishing the effects of the lesion level, some recently proposed complexity estimators could also reveal the pathologic alterations in the autonomic control of heart rate. These estimators included the detrended fluctuation analysis coefficient (sensitive to both low and high autonomic lesions), sample entropy (sensitive to low-level lesions) and the largest Lyapunov exponent (sensitive to high-level lesions). Thus complexity-based methods provide information on the autonomic function from the heart rate dynamics that cannot be obtained by traditional techniques. This finding supports the combined use of both complexity-based and traditional methods to investigate the autonomic cardiovascular control from a more comprehensive perspective.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:53 ,  Issue: 1 )