By Topic

Classification of osteoarthritic and normal knee function using three-dimensional motion analysis and the Dempster-Shafer theory of evidence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. J. Beynon ; Cardiff Bus. Sch., Cardiff Univ., UK ; L. Jones ; C. A. Holt

In this paper, a novel object classification method is introduced and developed within a biomechanical study of human knee function in which subjects are classified to one of two groups: subjects with osteoarthritic (OA) and normal (NL) knee function. Knee-function characteristics are collected using a three-dimensional motion-analysis technique. The classification method transforms these characteristics into sets of three belief values: a level of belief that a subject has OA knee function, a level of belief that a subject has NL knee function, and an associated level of uncertainty. The evidence from each characteristic is then combined into a final set of belief values, which is used to classify subjects. The final belief values are subsequently represented on a simplex plot, which enables the classification of a subject to be represented visually. The control parameters, which are intrinsic to the classification method, can be chosen by an expert or by an optimization approach. Using a leave-one-out cross-validation approach, the classification accuracy of the proposed method is shown to compare favorably with that of a well-established classifier-linear discriminant analysis. Overall, this study introduces a visual tool that can be used to support orthopaedic surgeons when making clinical decisions.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:36 ,  Issue: 1 )