By Topic

Tuning effective metal gate work function by a novel gate dielectric HfLaO for nMOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
X. P. Wang ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Ming-Fu Li ; C. Ren ; X. F. Yu
more authors

Using a novel HfLaO gate dielectric for nMOSFETs with different La composition, we report for the first time that TaN (or HfN) effective metal gate work function can be tuned from Si mid-gap to the conduction band to fit the requirement of nMOSFETs. This is explained by the change of interface states and Fermi pinning level by adding La into HfO2. The superior performances of the nMOSFETs compared with those using pure HfO2 gate dielectric are also reported, in terms of higher crystallization temperature and higher drive current Id without sacrifice of very low gate leakage current, i.e. 5-6 orders reduction compared with SiO2 at the same equivalent oxide thickness of ∼1.2-1.8 nm.

Published in:

IEEE Electron Device Letters  (Volume:27 ,  Issue: 1 )