Cart (Loading....) | Create Account
Close category search window
 

Iteratively decodable codes on m flats for WDM high-speed long-haul transmission

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sankaranarayanan, S. ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Djordjevic, I.B. ; Vasic, B.

In an earlier paper, we reported that the low-density parity-check (LDPC) codes from finite planes outperform any other known forward error-correction (FEC) scheme for optical communications. However, the number of different LDPC codes of code rate above 0.8 is rather small. As a natural extension of the prior work, in this paper, we consider LDPC codes on m flats derived from projective and affine geometries, which outperform codes from finite planes. The codes on m flats also provide a greater selection of structured LDPC codes of rate 0.8 or higher. The performance of the codes in a long-haul optical-communication system was assessed using an advanced simulator able to capture all important transmission impairments. Specifically, they achieve a coding gain of 10 dB at a bit error rate (BER) of 10-9, outperforming, therefore, the best turbo product codes proposed for optical communications. In addition, the simulator implements a fixed-point (FP) iterative decoder that allows control of the precision of the soft information used in the decoder. Such quantization is required to facilitate hardware implementations of the iterative decoder, and the high-speed operations for long-haul optical transmission systems. The loss in performance due to reduced precision of the soft information can be as low as 0.2 dB.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 11 )

Date of Publication:

Nov. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.