Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Distributed MEMS analog phase shifter with enhanced tuning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McFeetors, G. ; Dept. of Electr. & Comput. Eng., Univ. of Calgary, Alta. ; Okoniewski, M.

The design, fabrication, and measurement of a tunable microwave phase shifter is described. The phase shifter combines two techniques: a distributed capacitance transmission line phase shifter, and a large tuning range radio frequency (RF) microelectromechanical system (MEMS) capacitor. The resulting device is a large bandwidth, continuously tunable, low-loss phase shifter, with state-of-the-art performance. Measurements indicate analog tuning of 170deg phase shift per dB loss is possible at 40 GHz, with a 538deg phase shift per centimeter. The structure is realized with high-Q MEMS varactors, capable of tuning C max/Cmin= 3.4. To our knowledge, this presents the lowest loss analog millimeter wave phase shifter performance to date

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:16 ,  Issue: 1 )