Cart (Loading....) | Create Account
Close category search window
 

Audio-based context recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Eronen, A.J. ; Nokia Res. Center, Tampere, Finland ; Peltonen, V.T. ; Tuomi, J.T. ; Klapuri, A.P.
more authors

The aim of this paper is to investigate the feasibility of an audio-based context recognition system. Here, context recognition refers to the automatic classification of the context or an environment around a device. A system is developed and compared to the accuracy of human listeners in the same task. Particular emphasis is placed on the computational complexity of the methods, since the application is of particular interest in resource-constrained portable devices. Simplistic low-dimensional feature vectors are evaluated against more standard spectral features. Using discriminative training, competitive recognition accuracies are achieved with very low-order hidden Markov models (1-3 Gaussian components). Slight improvement in recognition accuracy is observed when linear data-driven feature transformations are applied to mel-cepstral features. The recognition rate of the system as a function of the test sequence length appears to converge only after about 30 to 60 s. Some degree of accuracy can be achieved even with less than 1-s test sequence lengths. The average reaction time of the human listeners was 14 s, i.e., somewhat smaller, but of the same order as that of the system. The average recognition accuracy of the system was 58% against 69%, obtained in the listening tests in recognizing between 24 everyday contexts. The accuracies in recognizing six high-level classes were 82% for the system and 88% for the subjects.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:14 ,  Issue: 1 )

Date of Publication:

Jan. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.