By Topic

Instrument recognition in polyphonic music based on automatic taxonomies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Essid, S. ; LTCI-CNRS, Paris, France ; Richard, G. ; David, B.

We propose a new approach to instrument recognition in the context of real music orchestrations ranging from solos to quartets. The strength of our approach is that it does not require prior musical source separation. Thanks to a hierarchical clustering algorithm exploiting robust probabilistic distances, we obtain a taxonomy of musical ensembles which is used to efficiently classify possible combinations of instruments played simultaneously. Moreover, a wide set of acoustic features is studied including some new proposals. In particular, signal to mask ratios are found to be useful features for audio classification. This study focuses on a single music genre (i.e., jazz) but combines a variety of instruments among which are percussion and singing voice. Using a varied database of sound excerpts from commercial recordings, we show that the segmentation of music with respect to the instruments played can be achieved with an average accuracy of 53%.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:14 ,  Issue: 1 )