By Topic

A globally stable adaptive congestion control scheme for Internet-style networks with delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Alpcan ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; T. Basar

In this paper, we develop, analyze and implement a congestion control scheme in a noncooperative game framework, where each user's cost function is composed of a pricing function proportional to the queueing delay experienced by the user, and a fairly general utility function which captures the user demand for bandwidth. Using a network model based on fluid approximations and through a realistic modeling of queues, we establish the existence of a unique equilibrium as well as its global asymptotic stability for a general network topology, where boundary effects are also taken into account. We also provide sufficient conditions for system stability when there is a bottleneck link shared by multiple users experiencing nonnegligible communication delays. In addition, we study an adaptive pricing scheme using hybrid systems concepts. Based on these theoretical foundations, we implement a window-based, end-to-end congestion control scheme, and simulate it in ns-2 network simulator on various network topologies with sizable propagation delays.

Published in:

IEEE/ACM Transactions on Networking  (Volume:13 ,  Issue: 6 )