By Topic

Implicit meshes for surface reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ilic, S. ; Comput. Vision Lab., Ecole Polytech. Fed. de Lausanne, Switzerland ; Fua, P.

Deformable 3D models can be represented either as traditional explicit surfaces, such as triangulated meshes, or as implicit surfaces. Explicit surfaces are widely accepted because they are simple to deform and render, but fitting them involves minimizing a nondifferentiable distance function. By contrast, implicit surfaces allow fitting by minimizing a differentiate algebraic distance, but are harder to meaningfully deform and render. Here, we propose a method that combines the strength of both approaches. It relies on a technique that can turn a completely arbitrary triangulated mesh, such as one taken from the Web, into an implicit surface that closely approximates it and can deform in tandem with it. This allows both automated algorithms to take advantage of the attractive properties of implicit surfaces for fitting purposes and people to use standard deformation tools they feel comfortable for interaction and animation purposes. We demonstrate the applicability of our technique to modeling the human upper-body, including face, neck, shoulders, and ears, from noisy stereo and silhouette data.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 2 )