By Topic

A dynamic conditional random field model for foreground and shadow segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Wang ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Kia-Fock Loe ; Jian-Kang Wu

This paper proposes a dynamic conditional random field (DCRF) model for foreground object and moving shadow segmentation in indoor video scenes. Given an image sequence, temporal dependencies of consecutive segmentation fields and spatial dependencies within each segmentation field are unified by a dynamic probabilistic framework based on the conditional random field (CRF). An efficient approximate filtering algorithm is derived for the DCRF model to recursively estimate the segmentation field from the history of observed images. The foreground and shadow segmentation method integrates both intensity and gradient features. Moreover, models of background, shadow, and gradient information are updated adaptively for nonstationary background processes. Experimental results show that the proposed approach can accurately detect moving objects and their cast shadows even in monocular grayscale video sequences.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 2 )